Integumentary System

\qquad

Uniquely You: A Fingerprint Activity

Everyone on earth has a unique set of fingerprints, even identical twins! Learn about the various types of fingerprint patterns, and determine which pattern is yours.

Objective: To determine your unique fingerprint pattern and look at the distribution of patterns among your classroom population.

Here's what you'll need to conduct this activity:

Uniquely You Fingerprint Worksheet
Pencils
Scotch Tape

Background Information:

Your fingerprints are not just an identifying mark on your body, they're nature's gripping surface - allowing you to hold objects better. At the surface of the skin are tiny patterns that form when you're in your mother's womb. They get their distinct arrangement from pressure and finger movements when you're still a fetus and are visible by the time you are 20 weeks old.

Your fingerprints are even more unique than your DNA. Identical twins have nearly identical DNA but can have completely different fingerprints. However, fingerprint patterns can be inherited from your family members so chances are, you may have some of the same patterns as your mom or dad.

Your prints are made of a configuration of ridges called friction, dermal, or papillary ridges. Each ridge is created by dermal papillae and made of pores which secrete sweat and oil. You leave prints behind on things you touch because of the sweat and oil. Now a small injury won't affect the ridges because your skin will regrow in the same pattern. But, if the injury is deep enough, the ridges can be destroyed and scars will show in your prints. However, even with age, your fingerprints never change.

Fingerprinting is an inexpensive form of biometrics used to identify individuals by using their physical characteristics. The technique of fingerprinting is called dactyloscopy. When comparing fingerprints of a crime scene and possible suspect, examiners look at the shape of ridges and where the ridges start, end, join, and split.

Integumentary System

\qquad

Uniquely You: A Fingerprint Activity

Fingerprint Examples:

The most common types of prints are loops, whorls, arches, and combinations of the three.

Using the data in the graph above:

1. What percentage of individuals in the national population have loops? \qquad
2. What percentage have whorls? \qquad
3. What percentage have arches? \qquad
4. Which is greater, the percentage of individuals with loops or the percentage of individuals with whorls plus arches? \qquad

Hypothesis:

What do you think will be the MOST common kind of fingerprint amongst your classmates? \qquad Why? \qquad
What do you think will be the LEAST common? \qquad Why?

Integumentary System

\qquad

Uniquely You: A Fingerprint Activity

What you do:

1. Create an "ink pad" by rubbing the graphite of your pencil on a loose-leaf sheet until it turns dark grey. Refill your "ink pad" as needed.
2. Using your right hand, rub your pointer finger on your "ink pad" until it's completely grey.
3. Take a small piece of scotch tape and place it over your fingertip, pressing down carefully so as not to smudge the print.
4. Remove the tape and place it in the appropriate part of your data table. just below
5. Repeat for your remaining fingers and thumbs on your right and left hand.
6. Look at the fingerprint identify the type of fingerprints you have by comparing to the examples proviaea. Locate oaa marks or scars as well - these make your prints uniquely you!

Data Table: Right Hand

Finger Name	Right Thumb	Right Pointer	Right Middle	Right Ring	Right Pinky
Fingerprint					
Fingerprint Type/Name					

Data Table: Left Hand

Finger Name	Left Thumb	Left Pointer	Left Middle	Left Ring	Left Pinky
Fingerprint					
Fingerprint Type/Name					

What you might find is that your thumbs and fingers vary in the type of pattern they have. Classify your prints and record the number of fingers with each pattern (remember your total should equal 10):

Loops: \qquad Whorls: \qquad Arches: \qquad
Now take the totals of each pattern and divide by 10 to get your percentage for each pattern.

Percent Loops: \qquad Percent Whorls: \qquad Percent Arches: \qquad How do YOUR prints compare to the national average?

Integumentary System

Uniquely You: A Fingerprint Activity

The Results: What Happened?

Write down your fingerprint results. Facetime 2-3 friends from the class and ask them for their results. With those results, you will be able to create a graph below.

Total fingers with Loop pattern:
Total fingers with Whorl pattern:
Total fingers with Arch pattern:
Total Fingerprints:
What is the most common type of fingerprint pattern with you friends?
Take your 2-3- friends fingerprint results and graph it below. Label the x-axis and y-axis.
What type of graph should you use to best display this data? ___
Why? _-_

Graph Title:

Integumentary System

Name:

Uniquely You: A Fingerprint Activity

Extension Questions:
Answer the following questions using the information you collected from the fingerprinting activity

1. Using your graph, what is the \% of fingerprint patterns within your 1 friends \mid that are a Loop: Whorl: Arch?
2. Does your, friends graph resemble the graph of the national population (p. 2) ? How? \qquad
\qquad
3. How would you predict your graph of fingerprint patterns would compare to that of another population?
How woula you test this prediction? \qquad
\qquad
4. If you could do this activity over again, how might you improve your data so your results would be more reliable? \qquad
\qquad
\qquad
\qquad
\qquad
\qquad
5. There are several ways for obtaining fingerprints from a crime scene - lodine fuming, dusting, and Cynanoacrylate fuming. Why do you think it must be necessary to use different fingerprinting methods at crime scenes? \qquad
\qquad
\qquad
6. If you had a clone, do you think they would have the same fingerprint patterns as you? Would they be EXACTLY the same? \qquad Why? \qquad
\qquad
7. Ask your family to do this activity and look at their patterns. Explain what your data shows about familial inheritance regarding fingerprints. \qquad
\qquad
\qquad
\qquad
\square
